МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г.Шухова)

Согласовано	Утверждено
Начальник отдела магистратуры	Проректор по учебной работе
И.В. Ярмоленко	В.М. Поляков

ПРОГРАММА

вступительного испытания для поступающих в магистратуру по направлению 13.04.01 Теплоэнергетика и теплотехника программе Энергетика теплотехнологии

Институт: энергетический

Выпускающая кафедра: энергетики теплотехнологии

Программа составлена на основе ФГОС ВПО направления 13.04.01 Теплоэнергетика и теплотехника и содержит перечень вопросов по дисциплинам базовой части профессионального цикла подготовки бакалавров, содержащихся в задании вступительного испытания в магистратуру по направлению 13.04.01 Теплоэнергетика и теплотехника магистерской программе Энергетика теплотехнологий

Составитель:	/I	В.П. Кожевн	иков		
	/	Т.П. Кравче	енко		
Программа рассмо кафедры протокол № _8				заседании	выпускающей
Руководитель ООП маги	стратуры _		/В.П. Коже	вников	
Зав. кафедрой			/В.П. Коже	вников/	

1. СОСТАВ УЧЕБНЫХ ДИСЦИПЛИН, ВКЛЮЧЕННЫХ В ПРОГРАММУ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ В МАГИСТРАТУРУ

- 1.1. Гидрогазодинамика
- 1.2. Техническая термодинамика
- 1.3. Тепломассообмен
- 1.4. Энергосбережение в теплоэнергетике и теплотехнологии
- 1.5. Нетрадиционные и возобновляемые источники энергии

2.СОДЕРЖАНИЕ УЧЕБНЫХ ДИСЦИПЛИН

2.1. Гидрогазодинамика

- 1. Физический смысл дивергенции вектора массовой скорости жидкости. Дифференциальное уравнение неразрывности потока как математическое выражение закона сохранения массы.
- 2. Понятие о тензорных величинах в гидрогазодинамике; тензоры напряжений и скоростей деформации.
- 3. Связь между тензором напряжений и тензором скоростей деформации (линейные соотношения Стокса).
 - 4. Вязкость жидкости и газов. Закон внутреннего трения Ньютона.
- 5. Дифференциальные уравнения движения вязкой жидкости Навье-Стокса как математическое выражение закона сохранения количества движения.
- 6. Дифференциальные уравнения равновесия жидкости Эйлера как частный случай уравнений Навье–Стокса. Как создается тяга дымовой трубы?
- 7. Применение уравнения Бернулли для измерения скорости и расхода жидкости. Принцип действия измерительной диафрагмы.
- 8. Какие процессы в гидродинамике считаются подобными? Физический смысл чисел Эйлера, Рейнольдса, Фруда, Архимеда.
- 9. Применение обобщенных уравнений для расчета сопротивлений при течении жидкости. Влияние самотяги на сопротивление газохода.
- 10. Объясните с помощью обобщенных уравнений, при каких условиях сопротивление трения пропорционально ее скорости жидкости в первой степени и при каких квадрату скорости?
- 11. Ламинарное течение жидкости в каналах и трубах. Параболическое распределение скорости при ламинарном течении в плоском канале и в трубах.
- 12. Явление отрыва пограничного слоя. Чем уравнения пограничного слоя отличаются от дифференциальных уравнений Навье–Стокса?
- 13. Турбулентное движение жидкости и газа. Основные статистические характеристики турбулентности. Понятие о масштабе турбулентности.
- 14. Осредненные уравнения Рейнольдса для турбулентного движения. Почему в турбулентном потоке возникают дополнительные напряжения внутреннего трения?
- 15. Полуэмпирическая гипотеза турбулентности Прандтля. Логарифмический закон распределения скорости в пограничном слое и в поперечном сечении трубы.
- 16. Структура турбулентного пограничного слоя. Безразмерная скорость жидкости в вязком, переходном и равновесном подслоях турбулентного пограничного слоя.
- 17. Структура свободных струй жидкости и газа. Транспортирующая способность турбулентной струи. Почему поток импульса остается постоянным по длине свободной струи?
- 18. Особенности истечения газа из сужающегося сопла. Каким физическим условиям соответствуют критические параметры истечения совершенного газа?

- 19. Условия возникновения скачка уплотнения при истечении газа из сужающегося сопла? Какую форму имеет сопло для истечения газа со сверхзвуковой скоростью?
- 20. Гидродинамические условия свободного осаждения сферической частицы. Понятие о скорости витания.
- 21. Основные характеристики и гидравлическое сопротивление псевдоожиженного слоя. Скорости начала псевдоожижения и начала уноса.
- 22. Обобщенное уравнение для расчета рабочих параметров псевдоожижения? Какие условия ограничивают область существования псевдоожиженного слоя?

Рекомендованная литература

- 1. Кузнецов В.А. Основы гидрогазодинамики. Белгород, Изд-во БГТУ, 2011. 112 с.
- 2. Швыдкий В.С., Ярошенко Ю.Г., Гордон Я.М., Шаврин В.С., Носков А.С. Механика жидкости и газа. М.: ИКЦ "Академкнига", 2003. 464 с.
 - 3. Самойлович Г.С. Гидрогазодинамика. М.: Машиностроение, 1990. 384 с.
 - 4. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. 760 с.
 - 5. Альбом течений жидкости и газа / M. Ван Дайк. M.: Мир, 1986. 182 c.

2.2. Техническая термодинамика

- 1. Термодинамические параметры состояния тела.
- 2. Термодинамическая система и окружающая среда.
- 3. Равновесное и неравновесное состояние термодинамической системы.
- 4. Понятие о термодинамическом процессе.
- 5. Термические уравнения состояния.
- 6. Теплоёмкость идеальных газов. Уравнение Майера.
- 7. Первый закон термодинамики. Формулировки первого закона.
- 8. Внутренняя энергия тела.
- 9. Теплота и работа- формы передачи энергии.
- 10. Обратимые и необратимые термодинамические процессы.
- 11. Параметр состояния термодинамической системы-энтальпия.
- 12. Уравнение первого закона термодинамики для потока.
- 13. Термодинамический процесс идеального газа при постоянном объёме.
- 14. Термодинамический процесс идеального газа при постоянном давлении.
- 15. Термодинамический процесс идеального газа при постоянной температуре.
- 16. Термодинамический процесс идеального газа без теплообмена с внешней средой.
- 17. Политропный процесс. Особенности политропного процесса.
- 18. Прямой цикл Карно и его термический КПД.
- 19. Обратный цикл Карно и его холодильный коэффициент.
- 20. Аналитическое выражение второго закона термодинамики и его формулировки.
- 21. Изменение энтропии в необратимых процессах.
- 22. Понятие эксергии. Потеря эксергии в необратимых процессах.
- 23. Реальные газы. Уравнение состояния реальных газов.
- 24. Фазовые переходы. Правило фаз Гиббса.
- 25. Уравнение Клапейрона-Клаузиуса.
- 26. Водяной пар. Процесс парообразования при постоянном давлении.
- 27. PV-, TS-, IS- диаграммы водяного пара.
- 28. Основные термодинамические процессы водяного пара.
- 29. Основные уравнения процессов течения.
- 30. Истечение из суживающихся сопл.
- 31. Переход через скорость звука. Сопло Лаваля.
- 32. Адиабатное течение с трением.

- 33. Температура адиабатного торможения.
- 34. Дросселирование газов и паров. Эффект Джоуля-Томсона.
- 35. Процессы сжатия в компрессоре. Индикаторная диаграмма компрессора.
- 36. Процесс сжатия в многоступенчатом компрессоре.
- 37. Параметры влажного воздуха. І-х диаграмма влажного воздуха.
- 38. Теплосиловой паровой цикл Карно.
- 39. Цикл Ренкина.
- 40. Цикл Ренкина с перегревом пара.
- 41. Зависимость величины термического КПД цикла Ренкина от значений параметров водяного пара.
 - 42. Теплофикационные циклы.
 - 43. Цикл воздушной холодильной установки.
 - 44. Цикл парокомпрессорной холодильной установки.
 - 45. Понятие о цикле абсорбционной холодильной установке.
 - 46. Цикл газотурбинной установки с подводом тепла при постоянном давлении.
 - 47. Тепловой эффект химической реакции. Закон Гесса.

Рекомендованная литература:

- 1. Гришко Б.М. Техническая термодинамика. В 2 ч. Ч. 1.Основы термодинамики: учеб. пособие / Б.М. Гришко, П.А. Трубаев. Белгород: Изд-во БГТУ, 2009. 138 с.
- 2. Трубаев П.А. Техническая термодинамика. В 2 ч. Ч. 2. Технические предложения термодинамики: учеб. пособие / П.А. Трубаев, Б.М. Гришко. Белгород: Изд-во БГТУ, 2009. 122 с.
- 3. Кириллин В. А. Техническая термодинамика [Электронный ресурс] : учеб. для студентов вузов, обучающихся по направлению подготовки 140100 "Теплоэнергетика" / В. А. Кириллин, В. В. Сычев, А. Е. Шейндлин. 5-е изд., перераб. и доп. . Электрон. текстовые дан. М. : Издательский дом МЭИ, 2008.
- 4. Нащокин В. В.Техническая термодинамика и теплопередача : учеб. пособие для неэнергет. специальностей вузов / В. В. Нащокин, А. В. Вавилов. 4-е изд., стер. М. : Aз-book, 2009.-469 с.
- 5. Техническая термодинамика и теплотехника : учеб. пособие / ред. А. А. Захарова. М. : Академия, 2006. 271 с.
- 6. Кудинов В. А. Техническая термодинамика и теплопередача: учеб. для бакалавров / В. А. Кудинов, Э. М. Карташов, Е. В. Стефанюк. М.: Юрайт, 2011. 560 с
- 7. Техническая термодинамика и теплотехника : учеб. пособие / ред. А. А. Захарова. М. : Академия, 2006. 271 с.
 - 8. Теплотехника /Под общей редакцией В.И. Крутова. М.: Машиностроение, 1986.

2.3. Тепломассообмен

- 1. Основные случаи теплообмена и их общая характеристика.
- 2. Температурное поле. Градиент температуры. Плотность теплового потока.
- 3. Закон Фурье. Коэффициент теплопроводности.
- 4. Дифференциальное уравнение теплопроводности. Граничные условия первого, второго и третьего рода.
- 5. Дифференциальное уравнение стационарной теплопроводности однослойной плоской стенки и уравнение ее стационарного температурного поля.
- 6. Плотность теплового потока через однослойную плоскую стенку и термическое сопротивление стенки при стационарной теплопроводности.
- 7. Плотность теплового потока через многослойную плоскую стенку и полное термическое сопротивление стенки при стационарной теплопроводности. Температурное поле многослойной плоской стенки.

- 8. Дифференциальное уравнение стационарной теплопроводности однослойной цилиндрической стенки и уравнение ее стационарного температурного поля.
- 9. Линейная плотность теплового потока через однослойную цилиндрическую стенку и термическое сопротивление стенки при стационарной теплопроводности.
- 10. Линейная плотность теплового потока через многослойную цилиндрическую стенку полное термическое сопротивление стенки при стационарной теплопроводности. Температурное поле многослойной цилиндрической стенки.
- 11. Нестационарная теплопроводность. Характер изменения температуры тела при его нагревании (охлаждении). Безразмерная избыточная температура тела. Числа Био и Фурье.
- 12. Дифференциальное уравнение теплопроводности для неограниченной пластины и бесконечно длинного цилиндра и его аналитическое решение.
- 13. Регулярный режим охлаждения (нагрева) тел и расчет процессов нестационарной теплопроводности. Определение темпа охлаждения тела.
- 14. Конвективный теплообмен. Ламинарный и турбулентный пограничный слой. Тепловой пограничный слой. Коэффициент вязкости и теплоемкость теплоносителя.
 - 15. Формула Ньютона для теплового потока. Коэффициент теплоотдачи
 - 16. Дифференциальные уравнения конвективного теплообмена.
- 17. Геометрические, физические, временные и граничные условия однозначности для процесса теплоотдачи.
- 18. Теория подобия и ее применение к исследованию конвективного теплообмена. Основные понятия. Обязательная предпосылка подобия физических явлений
 - 19. Три теоремы теории подобия физических явлений
 - 20. Числа подобия в теплоотдаче и их характеристика. Определяемое число подобия/
- 21. Уравнения подобия в теплоотдаче при свободном и вынужденном движении теплоносителя.
- 22. Режимы движения теплоносителя в трубах при теплоотдаче. Участки гидродинамической и тепловой стабилизации.
- 23. Определение коэффициента теплоотдачи с помощью уравнения подобия при ламинарном вязкостно-гравитационном режиме течения теплоносителя в трубах.
- 24. Определение коэффициента теплоотдачи с помощью уравнения подобия при турбулентном режиме течения теплоносителя в трубах.
- 25. Картина движения теплоносителя при поперечном обтекании одиночной трубы и пучка труб.
- 26. Определение среднего коэффициента теплоотдачи с помощью уравнения подобия при поперечном обтекании одиночной трубы.
- 27. Определение среднего коэффициента теплоотдачи с помощью уравнения подобия при поперечном обтекании шахматного и коридорного пучка труб/
- 28. Определение среднего коэффициента теплоотдачи с помощью уравнения подобия при ламинарном режиме движения теплоносителя вдоль плоской поверхности.
- 29. Определение среднего коэффициента теплоотдачи с помощью уравнения подобия при турбулентном и смешанном режиме движения теплоносителя вдоль плоской поверхности.
- 30. Определение среднего коэффициента теплоотдачи с помощью уравнения подобия при свободном движения теплоносителя в неограниченном пространстве для различных форм поверхности теплообмена.
- 31. Особенности свободного движения теплоносителя в ограниченном пространстве. Расчет процесса теплообмена в замкнутой прослойке и в открытом зазоре между вертикальными стенками.
- 32. Теплообмен при кипении жидкости. Пузырьковый и пленочный режимы кипения.

- 33. Расчет процесса теплоотдачи в случае пузырькового кипения жидкости при задании плотности теплового потока и перегрева жидкости/
- 34. Кипение жидкости, движущейся по трубам. Определение коэффициента теплоотдачи.
- 35. Пленочный и капельный режимы поверхностной конденсации пара. Режимы движения пара и конденсатной пленки. Средний коэффициент теплоотдачи при конденсации неподвижного насыщенного пара.
- 36. Определение среднего коэффициента теплоотдачи при конденсации движущегося пара на поверхности поперечно омываемого горизонтального пучка труб.
- 37. Теплообмен излучением. Основные понятия и определения. Закон Планка и его графическое изображение.
- 38. Теплообмен излучением. Закон Вина. Закон Стефана-Больцмана. Коэффициент излучения абсолютно черного тела.
- 39. Теплообмен излучением. Закон Кирхгофа. Степень черноты реальных тел. Закон Ламберта.
- 40. Результирующий тепловой поток излучения между плоскими параллельными стенками и когда одно тело окружено поверхностью другого. Тепловые экраны.
- 41.Особенности излучения газов. Степень черноты паров воды, диоксида углерода и их смеси. Собственное излучение газового объема.
- 42. Результирующий поток излучения между газом и облучаемой поверхностью. Теплообмен излучением между факелом и радиационной поверхностью.
 - 43. Сложный теплообмен. Коэффициент радиационно-конвективного теплообмена.
- 44. Теплопередача через однослойную и многослойную плоскую стенку. Плотность теплового потока. Коэффициент теплопередачи. Полное термическое сопротивление. Температуры поверхностей стенки.
- 45. Теплопередача через однослойную и многослойную цилиндрическую стенку. Плотность теплового потока. Линейный коэффициент теплопередачи. Полное термическое сопротивление. Температуры поверх0-ностей стенки.
- 46. Критический диаметр изоляции. Какое условие должно выполняться, чтобы изоляция вызвала уменьшение тепловых потерь?
- 47. Теплопередача через оребренную стенку. Тепловой поток и коэффициент теплопередачи.
- 48. Типы теплообменных аппаратов. Регенеративные и рекуперативные теплообменники. Области применения. Схемы движения теплоносителей.
- 49. Тепловой расчет рекуперативного теплообменника. Тепловой баланс и уравнение теплопередачи. Средний логарифмический температурный напор. Рабочая поверхность и средний коэффициент теплопередачи теплообменника.
- 50. Основные положения и законы теории массообмена. Закон Фика. Коэффициент диффузии. Формула Дальтона.
- 51. Дифференциальные уравнения конвективного массообмена. Аналогия процессов тепло- и массообмена. Уравнения подобия.

Рекомендуемая литература:

- 1. Теплотехника: Учеб. для вузов./В.Д. Ерофеев, П.Д. Семенов, А.С.Пряхин/Под ред. В.Д. Ерофеева. М.:ИКЦ «АКАДЕМКНИГА», 2006.-488 с.
- 2. Цветков Ф.Ф. ., Григорьев В.А. Тепломассообмен: Учебное пособие для вузов. М.: Изд-во МЭИ, 2006.-550 с.
- 3. Нащокин В. В.Техническая термодинамика и теплопередача : учеб. пособие для неэнергет. специальностей вузов / В. В. Нащокин, А. В. Вавилов. 4-е изд., стер. М. : A_3 -book, 2009.-469 с.
- 4. Телегин А.С., Швыдкий В.С., Ярошенко Ю.Г. Тепломассоперенос: Учебник для вузов. /Под редакцией Ю.Г. Ярошенко. М.: ИКЦ «Академкнига», 2002. 455 с.

- 5. Ерофеев В.Л., Семенов П.Д., Пряхин А.С. Теплотехника: Учебник для вузов. /Под ред. д-ра техн. наук, проф. В.Л. Ерофеева. М.: ИКЦ «Академкнига», 2006. 456 с.
- 6. Теплотехника: Учеб. для вузов. /В.Н. Луканин, М.Г. Шатров, Г.М. Камфер и др.: Под ред. В.Н. Луканина. М.: Высшая школа, 2003. 671c.
- 7. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача: Учеб. для вузов. М.: Энергоиздат, 1981. 416 с.
- 8. Михеев М.А., Михеева И.М. Основы теплопередачи. М.: «ИД «БАСТЕТ», 2010. 344 с.
- 9. Мухачев Г.А., Щукин В.К. Термодинамика и теплопередача: Учебник для вузов. М.: Высшая школа, 1991. 480 с.
- 10. Юдаев Б.Н. Техническая термодинамика. Теплопередача: Учебник для неэнергетич. спец. втузов. М.: Высшая школа, 1988. 479 с.
- 12. Баскаков А.П., Берг Б.В., Кузнецов Ю.В., Филлиповский Н.Ф. Теплотехника. Учебник для энергетических вузов (переработанный и дополненный). М.: «ИД «БАСТЕТ», 2010. -304 с.

2.4. Энергосбережение в теплоэнергетике и теплотехнологии

- 1. Виды ВЭР. Основные направления их использования.
- 2. Внешнее энергетическое и внешнее технологическое теплоиспользование.
- 3. Энергосберегающие тепловые схемы. Виды тепловых схем.
- 4. Основные показатели безотходности технологических процессов и установок.
- 5. Что понимается под отходами производства
- 6. Принципы безотходной технологии
- 7. Основные части интенсивного энергосбережения.
- 8. Экстенсивное и интенсивное энергосбережение в технологии.
- 9. Основные обобщенные показатели эффективности использования топливноэнергетических ресурсов. Сравнить эти показатели в России с промышленно развитыми странами.
 - 10. Пути использования горючих ВЭР. Основные трудности их использования.
 - 11. Пути использования высокотемпературных тепловых ВЭР.
 - 12. Пути использования низкопотенциальных тепловых ВЭР.
 - 13. Основные трудности утилизации тепла низкотемпературных дымовых газов
- 14. Термодинамические показатели эффективности теплоутилизационного оборудования.
- 15. Технико-экономические показатели эффективности теплоутилизационного оборудования.
- 16. В каких условиях более выгодно применять контактные теплообменники для утилизации тепла дымовых газов.
- 17. В каких условиях более выгодно применять рекуперативные теплообменники для утилизации тепла дымовых газов.
 - 18. Основные направления экономии энергии в строительстве.
 - 19. Пути использования ВЭР в цементной промышленности. Основные трудности.
- 20. Основные природоохранные и энергосберегающие технологии на ТЭЦ и котельных.
 - 21. Вида внешнего теплоиспользования.
 - 22. Экстенсивное и интенсивное энергосбережение в теплотехнологии.
 - 23. Безотходная и малоотходная технология.
 - 24. Энергосберегающие тепловые схемы. Их виды и характеристики.

Рекомендуемая литература

- 1. Энергосбережение в теплоэнергетике и теплотехнологиях /A.A. Кудинов, С.К. Зиганшина, М.: Машиностроение, 2011 г. 374 с.
- 2. Теплоэнергетика и теплотехника : в 4-х кн. : справочник / общ. ред.: А. В. Клименко, В. М. Зорин. 3-е изд., перераб. и доп. М. : Издательство МЭИ, 2004 . Кн.4 : Промышленная теплоэнергетика и теплотехника. 2004. 630 с.
- 3. Теплоэнергетика и теплотехника : в 4 кн. : справочник / общ. ред.: В. А. Григорьев, В. М. Зорин. 2-е изд., перераб. и доп. М. : Энергоатомиздат, 1991. Кн. 4 : Промышленная теплоэнергетика и теплотехника.
- 4. Ключников А. Д. Критерии энергетической эффективности и резерва энергосбережения теплотехнологии, теплотехнологических установок, систем и комплексов: учеб. пособие по курсу "Энергоэкон. оптимизация высокотемперартур. систем" / А. Д. Ключников. М.: Изд-во МЭИ, 1996. 37 с.
- 5. Данилов О.Л., Леончик Б.И. Научные основы энергосбережения. М.: МГУПП, 2000.
- 6. Федеральный закон № 261 (от 23.11.2009 г.) «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации»

2.5. Нетрадиционные и возобновляемые источники энергии

- 1. Проблемы использования установок традиционной энергетики и основные направления их решения
- 2. Место нетрадиционных источников энергии в удовлетворении энергетических потребностей человека
 - 3. Экологические проблемы традиционной энергетики
 - 4. Классификация возобновляемых источников энергии
 - 5. Солнце как источник энергии
 - 6. Физические основы фотоэлектрического преобразования солнечной энергии
- 7. Типы фотопреобразователей, их основные технико-экономические показатели, достоинства и недостатки, области применения.
- 8. Солнечный элемент на основе кремниевых пластин: типичная конструкция, работа, этапы производства
- 9. Виды солнечных коллекторов и особенности преобразования солнечной энергии в них
- 10. Необходимость применения селективных покрытий солнечных тепловых коллекторов, виды селективных покрытий
 - 11. Основы расчета эффективности солнечных коллекторов
- 12. Виды, основные элементы, достоинства и недостатки термодинамических солнечных электростанций
 - 13. Схема и принцип работы электростанции на базе солнечного пруда
 - 14. Ветер как источник энергии, потенциал и области использования энергии ветра
 - 15. Устройство ветроэнергетической установки, ее принцип работы
 - 16. Классификация ветроэнергетических установок, их достоинства и недостатки
 - 17. Основы расчета мощности ветроэнергетической установки
 - 18. Характеристика источников геотермальной энергии
 - 19. Классификация источников геотермальной энергии и геотермальных ресурсов
- 20. Геотермальные электростанции: типы, преимущества перед тепловыми электростанциями, особенности схем и работы
 - 21. Схемы систем геотермального теплоснабжения и особенности их работы
 - 22. Биомасса как источник энергии
 - 23. Термохимические методы переработки биомассы

- 24. Биохимические методы и устройства переработки биомассы
- 25. Способы производства спиртов из биомассы, области применения таких спиртов, их достоинства и недостатки
 - 26. Формы и потенциал использования энергии морей и океанов
 - 27. Схема, оборудование и принцип работы волновых электростанций
 - 28. Устройство и принцип работы приливной электростанции
 - 29. Использование энергии морских течений
 - 30. Использование энергии речных течений
 - 31. Устройство и принцип работы океанских тепловых электростанции
 - 32. Получение энергии за счет градиента солености морской и пресной воды
- 33. Характеристика водорода как источника энергии, основные методы его получения
 - 34. Методы аккумулирования энергии нетрадиционных источников
- 35. Тепловые насосы как устройства повышения эффективности низкопотенциального тепла

Рекомендуемая литература

- 1. Баранов Н.Н. Нетрадиционные источники и методы преобразования энергии: учебное пособие для вузов / Н.Н. Баранов. М.: Издательский дом МЭИ, 2012. 384 с.
- 2. Нетрадиционные и возобновляемые источники энергии: учебное пособие / под ред. В.В. Денисова. Ростов н/Д.: Феникс, 2015. 382 с. + CD. (Высшее образование).
- 3. Сибикин Ю.Д. Нетрадиционные и возобновляемые источники энергии: Учебное издание / Ю.Д. Сибикин, М.Ю. Сибикин. М.: ИП РадиоСофт, 2008. 228 с.
- 4. Теоретические основы теплотехники. Теплотехнический эксперимент: Справочник / Под общ. ред. чл.-корр. РАН А.В. Клименко и проф. В.М. Зорина. 3-е изд., перераб и доп. М.: Издательство МЭИ, 2001. 564 с. (Теплоэнергетика и теплотехника; Кн. 2).
- 5. Германович В. Альтернативные источники энергии и энергосбережение. Практические конструкции по использованию энергии ветра, солнца, воды, земли, биомассы / Германович В., Турилин А. СПб.: Наука и Техника, 2014. 320 с.
- 6. Баскаков А.П., Мунц В.А. Нетрадиционные и возобновляемые источники энергии. Учебник для вузов. М.: «ИД «БАСТЕТ», 2013. -368 с.